bolt/deps/llvm-18.1.8/mlir/lib/Dialect/MemRef/Utils/MemRefUtils.cpp
2025-02-14 19:21:04 +01:00

159 lines
5.8 KiB
C++

//===- MemRefUtils.cpp - Utilities to support the MemRef dialect ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utilities for the MemRef dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
namespace mlir {
namespace memref {
bool isStaticShapeAndContiguousRowMajor(MemRefType type) {
if (!type.hasStaticShape())
return false;
SmallVector<int64_t> strides;
int64_t offset;
if (failed(getStridesAndOffset(type, strides, offset)))
return false;
// MemRef is contiguous if outer dimensions are size-1 and inner
// dimensions have unit strides.
int64_t runningStride = 1;
int64_t curDim = strides.size() - 1;
// Finds all inner dimensions with unit strides.
while (curDim >= 0 && strides[curDim] == runningStride) {
runningStride *= type.getDimSize(curDim);
--curDim;
}
// Check if other dimensions are size-1.
while (curDim >= 0 && type.getDimSize(curDim) == 1) {
--curDim;
}
// All dims are unit-strided or size-1.
return curDim < 0;
}
std::pair<LinearizedMemRefInfo, OpFoldResult> getLinearizedMemRefOffsetAndSize(
OpBuilder &builder, Location loc, int srcBits, int dstBits,
OpFoldResult offset, ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides, ArrayRef<OpFoldResult> indices) {
unsigned sourceRank = sizes.size();
assert(sizes.size() == strides.size() &&
"expected as many sizes as strides for a memref");
SmallVector<OpFoldResult> indicesVec = llvm::to_vector(indices);
if (indices.empty())
indicesVec.resize(sourceRank, builder.getIndexAttr(0));
assert(indicesVec.size() == strides.size() &&
"expected as many indices as rank of memref");
// Create the affine symbols and values for linearization.
SmallVector<AffineExpr> symbols(2 * sourceRank);
bindSymbolsList(builder.getContext(), MutableArrayRef{symbols});
AffineExpr addMulMap = builder.getAffineConstantExpr(0);
AffineExpr mulMap = builder.getAffineConstantExpr(1);
SmallVector<OpFoldResult> offsetValues(2 * sourceRank);
SmallVector<OpFoldResult> sizeValues(sourceRank);
for (unsigned i = 0; i < sourceRank; ++i) {
unsigned offsetIdx = 2 * i;
addMulMap = addMulMap + symbols[offsetIdx] * symbols[offsetIdx + 1];
offsetValues[offsetIdx] = indicesVec[i];
offsetValues[offsetIdx + 1] = strides[i];
mulMap = mulMap * symbols[i];
}
// Adjust linearizedIndices, size and offset by the scale factor (dstBits /
// srcBits).
int64_t scaler = dstBits / srcBits;
addMulMap = addMulMap.floorDiv(scaler);
mulMap = mulMap.floorDiv(scaler);
OpFoldResult linearizedIndices = affine::makeComposedFoldedAffineApply(
builder, loc, addMulMap, offsetValues);
OpFoldResult linearizedSize =
affine::makeComposedFoldedAffineApply(builder, loc, mulMap, sizes);
// Adjust baseOffset by the scale factor (dstBits / srcBits).
AffineExpr s0;
bindSymbols(builder.getContext(), s0);
OpFoldResult adjustBaseOffset = affine::makeComposedFoldedAffineApply(
builder, loc, s0.floorDiv(scaler), {offset});
return {{adjustBaseOffset, linearizedSize}, linearizedIndices};
}
LinearizedMemRefInfo
getLinearizedMemRefOffsetAndSize(OpBuilder &builder, Location loc, int srcBits,
int dstBits, OpFoldResult offset,
ArrayRef<OpFoldResult> sizes) {
SmallVector<OpFoldResult> strides(sizes.size());
if (!sizes.empty()) {
strides.back() = builder.getIndexAttr(1);
AffineExpr s0, s1;
bindSymbols(builder.getContext(), s0, s1);
for (int index = sizes.size() - 1; index > 0; --index) {
strides[index - 1] = affine::makeComposedFoldedAffineApply(
builder, loc, s0 * s1,
ArrayRef<OpFoldResult>{strides[index], sizes[index]});
}
}
LinearizedMemRefInfo linearizedMemRefInfo;
std::tie(linearizedMemRefInfo, std::ignore) =
getLinearizedMemRefOffsetAndSize(builder, loc, srcBits, dstBits, offset,
sizes, strides);
return linearizedMemRefInfo;
}
/// Returns true if all the uses of op are not read/load.
/// There can be SubviewOp users as long as all its users are also
/// StoreOp/transfer_write. If return true it also fills out the uses, if it
/// returns false uses is unchanged.
static bool resultIsNotRead(Operation *op, std::vector<Operation *> &uses) {
std::vector<Operation *> opUses;
for (OpOperand &use : op->getUses()) {
Operation *useOp = use.getOwner();
if (isa<memref::DeallocOp>(useOp) ||
(useOp->getNumResults() == 0 && useOp->getNumRegions() == 0 &&
!mlir::hasEffect<MemoryEffects::Read>(useOp)) ||
(isa<memref::SubViewOp>(useOp) && resultIsNotRead(useOp, opUses))) {
opUses.push_back(useOp);
continue;
}
return false;
}
uses.insert(uses.end(), opUses.begin(), opUses.end());
return true;
}
void eraseDeadAllocAndStores(RewriterBase &rewriter, Operation *parentOp) {
std::vector<Operation *> opToErase;
parentOp->walk([&](memref::AllocOp op) {
std::vector<Operation *> candidates;
if (resultIsNotRead(op, candidates)) {
opToErase.insert(opToErase.end(), candidates.begin(), candidates.end());
opToErase.push_back(op.getOperation());
}
});
for (Operation *op : opToErase)
rewriter.eraseOp(op);
}
} // namespace memref
} // namespace mlir